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Abstract. An explicit formula for the Kostka-Green-Foulkes polynomials correspond-
ing to bitableaux is presented.

INTRODUCTION

It is well known that the eigenvectors of the Hamiltonian of a quantum integrable
system may be constructed by using the so called Bethe Ansatz (see, for instance, [1]).
Such vectors are called the Bethe vectors. They are parametrized by the solutions of a
system of algebraic equations (the so called Bethe equations).

The creation of the quantum inverse scattering method made it clear that different
integrable models are associated with different representations of the commutation rela-
tions between the matrix coefficients of the quantum monodromy matrix [2]. This idea
was given a precise mathematical formulation in [3], [4]. It was shown that these matrix
coefficients generate a Hopf algebra. Particular representations of this algebra give rise
to integrable models. The states’ space of the model coincides with the representation
space.

Let g be a simple Lic algebra. An important class of integrable models are the so
called g-invariant models. The states’ space for such models is the tensor product of
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g-moduli: M = V,\‘ ® sz ® ... The Bethe vectors are the highest weight vectors
in the irreducible components of M and are parametrized by the solutions of Bethe’s
equations.

It is a nontrivial question whether the Bethe vectors form a complete system. In the
g-invariant case completeness means that the number of solutions of Bethe’s equations
must coincide with the number of g-irreducible componentsin M . For g = gé(n)
and M =V, ® V,\2 ® ... this has been proved analytically in [7] for the case when
the representations Vx,. correspond to rectangular Young diagrams A, . These latter
representations are distinguished among all the other by the fact that in this case Bethe’s
vectors form an orthogonal system in M .

Solutions of Bethe’s equations are parametrized by special combinatorial objects, the
so called rigged configurations. They were introduced in [5], [6] for the su(2)-case
and in [7], [8] for the general one. The completeness of Bethe’s vectors implies that
g-irreducible componentsin M are parametrized by the Young tableaux (or bitableaux
{11]). Hence in this case there should exist a combinatorial correspondence between the
rigged configurations and the Young tableaux (bitableaux). Physically, such bijection
naturally arises as one of the lattice’s sites goes to infinity; this causes a restructuring
of physical states, and the bijection should refiect these changes. In other words, the
correspondence we are looking for is defined by the ramification rules for Bethe’s vectors
as one of the lattice’s sites goes to infinity.

A bijection between the set of the standard Young tableaux (bitableaux) and the set of
rigged configurations based on the study of the asymptotic behaviour of Bethe'’s vectors
is established in [9], [10]. The present paper deals with some combinatorial aspects of
this correspondence. Unfortunately, we were obliged to discard completely the physical
background of the results obtained.

A few words arc in order on the contents of the paper. In Section1 we recall the basic
definitions and the necessary facts conceming the combinatorics of the Young tableaux.
In particular, we review the definitions of the standard tableaux and bitableaux. In Sec-
tion 2 we describe the decomposition into ireducible components of the tensor product
of the representations of g#(m) corresponding to rectangular Young diagrams. As a
corollary we present a formula for the multiplicity of a weight for irreducible tensor
represetations of the Lie supergroup GL(N|M) . The next sections deal with the com-
binatorial interpretation of Theorem 2.1 from Section 2. In Section 3 a formula for
the Kostka-Green-Foulkes polynomials corresponding to bitableaux is presented. As a
corollary, we deduce a new rule to compute the Clebsch-Gordan numbers, i.e. the mul-
tiplicities of irreducible components V; in the tensor product V, ® V, (Example 8,
Section 3). In example 5, section 3, we derive certain inequalities between the Kostka
polynomials [11]. In example 5, section 3, we derive certain inequalities between the
Kostka polynomials. In a particular case more general inequalities were derived by A.
Lascoux. In example 7 we derive a stability theorem for configurations. Note that the
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problem of computation of the generalized exponents [23] for sl(n) may be reduced to
the computation of some special Kostka polynomials [12], [13], [14], and so Theorem
3.1 implies an explicit formula for these exponents. In Section 4 we present a proof of
Theorem 3.1 (section 3) in an important special case. Following {10], we establish a
bijective correspondence between the rigged configurations of type (), u) and the set
of the standard tableaux of shape A and weight 4. The formula for the Kostka poly-
nomials is deduced from the properties of this correspondence. At the end of Section 4
we discuss a relation between the involution on the set of the standard tableaux induced
by the «inversion of the quantum numbers» and the Schiitzenberger involution on the
set of the standard tableaux induced by the involution. We prove that the latter maps the
charge functional into the index.

During the preparation of this paper, the help of N.Yu. Reshetikhin was of invaluable
support to me. Part of the results exposed below, e.g. Theorem 2.3, were obtained by
us jointly. I would also like to thank I.M. Gelfand, L.D. Faddeev, A.M. Vershik, A.N.
Zelevinsky, S.V. Kerov and L. A, Takhtajan for valuable and stimulating discussions, and
M.A. Semenov-Tian-Shansky for his help in translation of this work into English.

1. THE YOUNG BITABLEAUX

In this section we recall the basic definitions and the necessary facts concerning the
combinatorics of Young tableaux used in the present paper. The proofs and details may
be found in [11], [10].

1.1. Partitions, Young diagrams, tableaux and supertableaux
Let A = ();,),,...) be asequence of integers with finitely many nonzero terms,
and define

(1.1) = h + X+ ...

Recall that ) is a partition of = if the sequence is nonnegative, weakly decreasing,
and || = n. Nonzero terms in (1.1) are called the parts of the partition ) and their
number is called the length of the partition ), denoted by I()\) . The diagram of the
partition X is the set

12 D, ={(,/) €Z*1 <j< N},
which may be viewed as a collection of rectangular unit boxes in the plane with the
centers lying at the points (4,7) € Z%, 1< j < ), . Partitions are partially ordered

by inclusion of diagrams; we define

(1.3) ACu iff D,CD,.
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The set D, and its picture on the plane will be called the Young diagram of the shape
M. If X and v are partitions and v C X, let us call the set D,\D,, the Young diagram
of the shape A\\r . The conjugate )\’ is the partition whose diagram is the transpose of
D, ; thus, there are ] boxes in the i-th column of D, :

1.4 A = Card |{j|}; > i}].
It is clear that
(1.5) m(X) = Card |{j|}; = 1} = \{ = M\,

For every partition A we put

(N =) (i-Di=) (;) !

i>1 >1
(1.6) .
Q. (\) = Emin(n, PED PPV
J21 J=t

On the set of partitions we define the following relation of order: X > u iff

k k
S for all k.

A composition X of = isacollection A; € Z, suchthat |\ := 37 X; = n. Itis
clear that the functionals (X)), A}, m,()\),Q,(}\) may be defined not only for partitions
but also for compositions. For example,

Q, () = Zmin(n, ).

jz1

Let X be a totally ordered set. A Young tableau of shape A\\vr on the set X is an
assignement T" : D,,, — X of elements of the set X' to the boxes in the diagram of
shape A\r which satisfies the following condition.

The rows and columns are weakly increasing; i.e. T'(i,7) < T(4,j + 1) and
T(4,7) <T@+ 1,7) whenever (4,7), (4,7 + 1), (3+ 1,7) €Dy, -

For £ € X letus denote by T the inverse image T-1(z) ofthe element z inthe
tableau T". The set T, is called a horizontal (resp. vertical) strip, if there is at most one
box in every column (resp. line).

A standard tableau T onthe set X is a horizontal strip for all z € X . A bitableau
onthe set X is by definition a tableau such that for all x € X the set T, is either a
horizontal or a vertical strip.par For the future we assume that

X=X,,={1<2<..<T<2<...<m},
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and also that every set 7,7 € X isa horizontal strip, and every set T;—,}_ € X isa
vertical strip.

The pair (p|n) where p = (p,li € X),n = (g5// € X) is called the weight of
bitableau T". Let us denote by SBY (A\v, iz|n) the set of bitableaux of the shape A\v
and the weight (u{n) . Set STY (M\w, ) = SBY (M\r, u|0) .

1.2. Schur, Hall-Littlewood functions and Kostka-Green-Foulkes polynomials

Let v C X bepartitions, and z = (z,...,zy) be acollection of variables, I(}) <
N.

The Schur function S,\\”( z) corresponding to the skew Young diagram M\\v isde-
fined by the following formula

a.7n S,\\V(.'E) = Ezl‘(T)’
T

where X#T) = o' [ Xxh¥ u = p(T) isthe weight of the tableau T € STY (X, ),
K uw) < N.
For the Schur function §,,,(z) there is the following representation

Si(2) = Z Ky mu(2),
m

where the summation ranges over the partitions yx of |A\| — |v| into at most N parts,
the numbers K,,,, are equal to Card [STY(M\v,p)|, and m,(z) is the monomial
symmetric functien corresponding to the partition y :

m,(z) = E w(zi' ... i)

weSy

Let A D v be partitions, = (z,,...,2y), ¥ = (y;,...,¥)) be two collections
of vanables, I[(A) < M+ N.

The Schur superfunction H S,\\,,(zly) corresponding to the skew Young diagram
M\v is defined by the following formula [18], [17], [19]:

(1.8) HSy\ (zly) = Yz D ynD),
T

where (p(T)[7(T)) is the weight of bitableau T', T € SBY (M\wv,u|n),i(p) <
N,i(p) < M.
For the Schur superfunction H S*\,,( z|y) there is the following representation

(1.9) HS,\ (x|) = ) SKy\, - M (D m (),
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where the summation ranges over the partitions u,n such that W(u) < N,Il(n) <
M,|ul+ In| = |X| - |v| , the numbers SKj,, |, are equalto Card [SBY (M, u|n)|.

The Hall-Littlewood function P,(z;q) corresponding to the partition X is defined
by the following formula

i T, —qz;
(1.10) Py(z;9) = [oy ) (@0 (17! Yo (zT‘ o —’———]—>
Ll g —
o€Sy i<j T 7
where v,(g) := vai(q),m,- = X — A, and the polynomials v_(g) are equal to
i1
1 — T
Ty .

1—¢
Let us define the Kostka-Green-Foulkes polynomials K Al € Z{q] by the de-
composition

(1.11) S\(z) = EK;,,,(q)P“(z;q)-
m

Now we define the Kostka polynomials for skew diagrams and supertableaux.

Let M\, u,v,n be some partitions.

We define the Kostka polynomials K M@ Ky uin(@) by the following decom-
positions

(1.12) Si(® =D K, (9 P(3,0),
I
(1.13) HSy\,(z19) = Y K\l D P(2,9) Py(v,9).
[

1.3. The charge of a tableau

Let u,n be two partitions. Following Lascoux and Schiitzenberger we define the
charge C(T") of a bitableau T' € SBY (A\v, p|n) . Considera word w = a,...ay
with positive integer elements a; . The weight of w is the sequence p = (pq, iq,...)
where u, is the number of those a; ’s which are equal to 1. Suppose that 4 is a
partition.

(i) We first assume that w is a standard word, i.c., that its weightis y = (1
Let us index all elements of w as follows: the index of 1 isequal to 0 , and if the index
of K is 1,theindex of K + 1 iseither 1+ or 1+ 1 according to the location of K + 1
either to the right or to the left of K . The charge C(w) of w is then the sum of all its
indices.

(ii) Assume now that w is a word of weight u and g is a partition. We extract
a standard subword out of w in the following way. Reading w from left to right we

N).
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choose the first entry of 1, then the first entry of 2 to the right of the 1 chosen, and
so on. If at some step there isno S+ 1 to the right of the S chosen before, we come
back to the beginning of the word. This operation extracts from w a standard subword
w, outof w. Let us now delete the word w, from w and repeat the operation, thus
obtaining w, , etc.

The charge of w is defined to be the sum of the charges of the standard subwords
obtained in this way: C(w) = E c(w;) . We note that the charge of w is zero if and
only if w is a lattice word.

(iii) Letnow T € STY (X\v,u) . Reading successively the rows of T' from left
to right starting from the top, we obtain a word w(T") . The charge C(T) of T is by
definition C(w(T)) .

(iv) Let T € SBY ()\w,uln) where y and 7 arepartitions, {(u) = m,l(n) = n.
Associated with the bitableau 7" are two tableaux 7°(0) and T'(T) composed of the
boxes of T' filled with the integers {1,...,m} and {T,...,m}, respectively. We set

Cer(T) = C(T(0)), Cogy(T) = C(T(1)),
C(T) = Ceo (T) + Coaa (1),

where T" is the conjugate of T .
The pair (C,,(T),C,4q(T)) is called the charge of the supertableau T', and C(T")
is its total charge.

1.4. The index of a tableaux

Let w be a standard word of length N . By D(w) we denote the set of integers j
suchthat j and j+ 1 arecontainedin w and j+ 1 stands to the rightof ; in w. We
set

d=(w) = Card [D(w)|,des(w) = H_ j.
JED(w)

Clearly, C(w) = (1;) —d- N + des(w) . We define the index of w by Ind (w) =

g) —des(w) . Set A(T) = d(w(T)),Ind(T) = Ind(w(T)), where w(T) is

defined by (1.3), iii).

1.5. The charge functional and Kostka polynomials

Theorem (Lascoux-Schiitzenberger [21], [11]).

— C(T)
(1.14) K@= 3¢9
TeSTY (Apu)
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Theorem (Thomas [20]).

Ind
(1.15) KEam(@= Y, ™.
TeSTY())
It follows that
c(Ty _ Ind(T)
(1.16) Y, dP= 3 MO
TeSTY ()l u) TeSTY())

In 4, Corollary 4.2, we show that Schiitzenberger’s involution S onthe set STY ())
carries the charge functional into the index: C(T") = Ind (S(T")) . In this way we get
a combinatorial proof of the identity (1.16).

For the Kostka polynomials associated with skew diagrams and supertableaux (see
(1.12) and (1.13)), we have the following analog of (1.14).

THEOREM 1.1. We have

(1.17) KEn (= > ¢,
TeSTY (A\v,p)
(1.18) Kx\.;,m,,(‘l) = Z qC(T)'

TEeSTY (Mw,uln)
Formula (1.17) follows from (1.14) and the fact that the bijection (see [11], §9)
STY (0\w) =~ [ STY,(M\w, p) x STY (p, 1)

P

is compatible with the charge functional: if T € STY (M\\v,p) x STY (p,u) then
C(T) = C(m) . Recall that STY,(M\v,p) consists of the standard tableaux T of
shape A\v, weight u and charge zero.

1.6. Schiitzenberger’s involution

Let T € STY (), p) ,let p be acomposition, u = (py,...,4,;) all u,#0 . Elimi-
nate the integer T(1,1) from T . Using «jeu de taquin» following Schiitzenberger [16]
we derive a standard tableau 7" which has one box less than 7. Insert T'(1,1) into
the free box. By repeating this operation we come down to atableau T' of shape X such
that

T(i,/) 2 TG, j+ D, TG, >TG+1,7).

Let ST denote the tableau such that ST'(1,j) >=1+1 — f(i,j) . It is clear that
ST € STY (X, %) where i = (uy,4_y,---,41) - Therefore there is a mapping
(1.19) S:S8TY(Mp) — STY (X, ).

The mapping S is called Schiitzenberger’s involution if the weight p = (1¥) .
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2. DECOMPOSITION OF TENSOR PRODUCTS OF IRREDUCIBLE REPRE-
SENTATION OF GL(N),[7]

Let \,utD, u® .. be Young diagrams, |\| = E ] .
i1
Aset {v} consisting of Young diagrams v‘¥ k= 0,1,... such that

en W= Y Al—zui’)>=2(2u§”-xz

I>k+1 i>1 <k \j>1

is called a configuration of type (X, {u}) .
The number

PP () =P (v}, {u) =
2.2) = Emin(n, /‘ij) - “2{31) +Q (D)
j21
-2 Q"(V(k)) + Qn(y(kﬂ))
is called the number of vacancies for the configuration {v}. A configuration of type

(X, {u}) is called admissible if P¥(v) >0 forall n,k > 1.
For a collection X, {u!}) of Young diagrams put

(k) (k)
@.3) zolwh = ST (Pn + my (v )) ’

{v} k>1 n m"(y("))

where m_(1®) is the number of rows of length n in the diagram 1® . The summa-
tion in (2.3) ranges over all admissible type (A, {u}) configurations and

0 ,if m¢g[0,n),

n

(7"): " ifo<m<n
mi(n— M)’ = 7=

is the binomial coefficient.

THEOREM 2.1. Let )\, {u'} be a collection of Young diagrams such that I()) <
N,Wpj <N and [N =35, 4.
Then the multiplicity of the irreducible component V, in @V« Is estimated as
%
follows

(2.4) multy, (® Vo) < Z(OH{u}). =
It is not difficult to give examples showing that the inequality in (2.4) may be strict.

On the other hand, in Theorem 2.2 we describe a class of diagrams {u{"} for which an
exact equality in (2.4) holds.
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THEOREM 2.2. Assume that ()\) < N and all Young diagrams {u‘"} are rectangular,
i.e. have the form (m'),l < N . Then

@.5) multy (& V,0) = ZO{ud.- .

Theorem 2.2 (in an equivalent form) is proved analytically in [7] with the help of
generating functions and the multidimensional residues.

Remarks

1. It seems plausible that conversely if the equality in (2.4) holds for all ), then all
the diagrams u(9 are rectangular.

2. An essential point of the proof of Theorem 2.2 is to check the following identity
(which makes sense under the assumptions of Theorem 2.2)

(W ~PF () —1
(2.6) > I TT-nm™ )< T:Ln(y(k)) =0,

(x/} k>l n
where the summation ranges over all possible type (), {u}) configurations such that
PO + m (v'¥) <0.

3. The function Z(A|{u}) has a simple meaning in the quantum inverse scattering
method. If all Young diagrams u(* are rectangular, Z(\|{u}) isequal to the number of
Bethe’s vectors in the generalized Heisenberg ferromagnet model on the 1-dimensional
lattice with spins p(1, u? ..., which transform according to the representation V, .
Identity (2.6) means simply that interacting positive spins on the lattice cannot create
excitations with negative spins. Theorem 2.2. is equivalent to the completeness of the
multiplet family generated by the Bethe’s vectors in the generalized Heisenberg model.
Representations corresponding to rectangular Young diagrams are distinguished from all
the others by the fact that in this case Bethe’s vectors form an orthogonal system.

4. In formula (2.2) we have 9 = 0, as is evident from (2.1). However, for some
special choice of the diagrams u(? it is convenient to use a different boundary condition
for A9 (cf. (2.9), (3.9)).

5. Both the left hand side and the right hand side of (2.5) admit a natural combinatorial
interpretation. The former describes a certain class (depending on the concrete choice
of u{") of X\ shaped tableaux, while the latter may be described in terms of rigged
configurations (see (4.1)). Theorem 2.2 asserts that both sets have the same number of
elements. An explicit bijection between them is constructed in [9] when all p(¥ = (1)
and in [10] when p{® = (m,) or u'® = (1™) . The general case will be described by
the author in a separate publication.

6. Theorem 2.2 implies a new formula for the multiplicity of a weight (u]n) inthe
irreducible tensor GL( N|M)-module [10].
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THEOREM 2.3. The following equality holds

i P (k)
2.8) dim Vaulm = S TTTT < . (:l) -('-y‘;r:;,)(u )) |

(v} k>1 &

where the summation in (2.8) ranges over all sets of Young diagrams {V®} such that

0) R= DO -,
F2k+1
(i) PP (v) >0

forall n,k > 1, where

2.9) PR(W) = n =ty + Qu(0F7Y) —2Q, (%) + Q, (4D,
O =y .

3. THE KOSTKA-GREEN-FOULKES POLYNOMYALS

In this section we give a formula for calculating the Kostka-Green-Foulkes polyno-
mials corresponding to supertableaux (see (1.13)) and deduce some consequences from
it: inequalities between the Kostka-polynomials (example 5), a new rule for finding the
Clebsch-Gordan numbers (example 7). The proof of the main result of this section, The-
orem 3.1, will be given in section 4 for the case of Kostka polynomials corresponding
to tableaux.

Let X, p, 4, n be some partitions and p correspond to a rectangular Young diagram
p=(mb.

THEOREM 3.1. The following equality holds

o PR (a) + alP — ofP)
3.1 Enoan(© = 2S¢V TTITm ™" " e

{a} k21 ml q

where the summation ranges over all sets of Young diagrams {«'®} such that

@ a®= 37 Oy =p =),

Jok+1
(ii) PP(a) >0
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forall n, k> 1, where
PP (@) =n}, — nj,; + min(n, p, — py, )+
3.2 + E(agk_x) _ 20!;1:) + a§k+1))’
J<n
ol? =,

and [r:] is the q-binomial Gauss coefficient:

if Ogngm,[:ﬂ =0, if n¢[0,m]
q

Exponent C({a}) in(3.1) isequal to

(k) _ (K+1}
(3.3) c{ep =35 <°”‘ o ) ,

k>0 n

0

BY._BB-D
where <2>.— —Z——,ﬁeR. -

Remarks 3.1. Let us set v = (of*)’ . The vacancies numbers P{¥)(a) (see (3.2))
take the following form in terms of diagrams {1(¥} :

P{¥ (@) =P{P(v) = 1}, — m},, + min(m, p, — py, 1)+

+Q,(v* ) —2Q,0") + Q" D), V=

Note that m_(/P) = of¥ — ol¥, | so the formulas (3.1) and (2.3) are equivalent.

In the sequel the collections of diagrams {v} (or {«} ) which satisfy the condition (i)
will be called (\\p)-configurations , and those satisfing (i) and (i) (u|7)-admissible .
Now we give a few examples using Theorem 3.1.

(3.2a)

Example 1. Let » = (n,1™ 1),y be partitions, |\| = |u|,p = (0),n = (0) . Then we
have

_c|p—1
(34) K,\,,,(Q)—q |:>\,1_1:|q7

where C = n(p) — (M — Dl + n(X) .
Indeed, there is only one admissible configuration {a} which consists of the dia-
grams o‘® = (m — k), 1 < k < m — 1. The vacancies numbers are equal to

Pa)=p) ~m, PP (a)=0,2 <k<m—1.
The charge C({a}) may be found from (3.3). Notethat A > p=p) > N =m.
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Example 2. Let X = (n,2,1™), 4 be partitions, |u} = |A],0(0),n = (0). Then we

have
M =1 b=
=40 | M1 Hq 2
Kol =00 [N T[] ]

+& pr+ ey = — 1] [y =X
1 N —2 ]

where ¢; = m(p) + (X)) — Mg} — D,cp = nlp) + n(X) —p (N — 1) —pj .
In fact, there are two admissible configurations

{a} = {a® = (np},
{a} = {oV = (m —1,1),aP = (m), k> 2}.

(3.5)

For the first configuration P (a) = p) —2n+ny = pf+ X =), — AL, PP (a) =
Ay — X3 —1,P® = X, — .,k > 3. Formula (3.5) is proved.

Example 3. Let X\, u be some partitions of the number n, A > u. Let us define the
configuration {«} inthe following way: o{¥ := max()\,—k,0),k > 1. Itisclearthat
Sk = Y jske1 ;- We assert that {a} is an admissible configuration. Indeed, we
have P{P(a) = 0,if m < M\, k > 2. On the other hand, it is well-known (see [11])
that A > u = Q(k) 2 QM) .

The contribution to the Kostka polynomial K, ,(g) from the configuration {c} is
equal to

A2
(w) —Q, (M) + X =M
3.6) R(g) = dc H I:Qm H Sm— it m m+l |
m=1 m m+1 q
Note that deg r(q) = n{u) — n()) = deg K,\‘#(q) .
For each pair of diagrams A,y let us define the numbers a( X, u) and b(),u) in
the following way

3.7) Ky, (@) = b0, w) g (1+ 0(g).

CONJECTURE. (1.G. Macdonald [11]) a(), pu) = a(u',») .

It scems a very interesting task to study the behaviour of the number b(X,pu) . Is
it bounded when [A\| = |u| — oo? What values may take the numbers b(}) =
max{b(», )| [s] = |M}, by = max{b(X)||\] = N}? Idon’t know any diagrams
X, suchthat (A, u) >4 .

Let us formulate a few conjectures about the numbers &( ), i) :

1. (see [10]) B(X, 1) = b(u', ) .

2. by —oo,when N — 0.

3 b0\ w) =2 U N = =y > 2, - M D2,y — Xy > 2.
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Example 4. Letbe X = (5,3,2,1¥), 1 =(3,3,2,1¥+2) . There are four admissible
configurations, and

311372 =1 31TH, -2
_3 1 3 1
mao = [ 3] [ e )
211X -2 217X -2
3 1 5 1
<[ R0
Itisclearthat u' = (N+5,3,2), M =(N+3,3,2,1,1) and K,\v(9 = ¢ [Z}r

3 3113
3 3
q [1]+q [1][1].Thereforc

a(h, 1) = aly', M) = 3,b(X, w) = b(g',\) = 3.

(3.8)

Example 5. Inequalitics between the Kostka polynomials. Let X, be partitions, o =
(mb, p C ). Wedefine
(39) Kol @ = ¢ I K (7.

It is clear that -K—,\\p’#(q) is a polinomial, fk\p‘y(O) =1, because deg _K,\\M(q) =
n(p) — n{A\p) and its leading coefficient is equal to 1. It follows from Theorem 3.1
that polynomial —I?,\\M( g) has a similar expression in which the exponent C({a}) is
calculated by the following formula

C({a}) =n(p) — n(M\p) — C({a}) -

_ZZ (k) (k) P(k)(a)

k>1 n

LEMMA 3.1. We have
C({a}) =CHa}) + Y py-al? —nl(p) —a(X\p) =

=3 (a(k) aM) > (ag‘l); PR

k>1 = k>1

(3.10)

The proof of Lemma 3.1 follows from the equality

ST aP PP (@) = 3 P otV -

k>1 n n>1

(kY ¢ (1) (1)
23 S alfal) ol

k1 n

Note that the exponent -C"({a}) (see (3.10)) depends only on a configuration {«}
and does’t depends on weight 4 .
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THEOREM 3.2. If p, < , , then

(.11) K\, (0 <Ky (0

For beginning let us remark that

PP ({a},u) PP ({a}, pp) = 8, 1(Q,(6)) — Q,(15)) >0,

because pj > ph . Therefore every u,-admissible configurationis also u,-admissible.
The proof of Theorem 3.1 follows easily from well-known result:

if  m,<m, then [mnl}qg{”;z]q.

In the case p = 0 the Theorem 3.1 is proved also by A . Lascoux (private commu-
nication). n

Example 6. Take A = (a; + N,...,0, + N, N N,...,.N ,N - B¢,... N - ;) =
e ———

n—-r—8

(a,=B), + (N™),n=((n— 1Y), |8l = N, () + P) < n.
LEMMA 3.2. The following equality holds

(3.12) Ky (@ = P K, (kg1 (0).

To avoid confusion, denote configurations that enter into (3.1) by {v} instead of
{a} . Consider a (), u|n)-configuration {v} see (2.11)). Then we have

pO1= 3 o 1<k<n—s, "9 =0,
Jok+1

]u(")|= Z ,n—s+1<k<n-1.

jon—s+l

Consequently, we may consider (a, u)-configuration {v{P := 1P |1 < k < n—s}
and B-configuration {vgk) =v®|n—s+ 1< k< n-1}.Itisclear that
PPy = PP (), 1 <k<n—s—1,049 =y,

PPw) = Py ™ (), n—s+1<k<n— 1,057 := (1Y),

From (3.3) and (3.10) it follows that
N
C({v}) =C({v,} + C({vs} - <2 > + N yé]f =

=C({v,} + Tug) + ).

Lemma 3.2 is proved. "
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Example 7. Take a = = (2,1),) =(4,3,2"*% 1) = (o, =B), + (2™),u = (2") .
The configuration {v} consists of diagrams ¥, 1 < k < n—2, and |o(V| =
2n—4, | =2n~2k~3,2 <k < n—2.Fromcondition P{¥(v) >0 forall
m, k > 2 it follows that the configuration {v} may be considered as a path of length
n — 3 in some graph. The vertices of this graph correspond to the two-rows Young
diagrams with 2k — 1 boxes and all ranges are

(k+1,k) = (k,k—1),
(k+2+a,k—-1—a) s (k+a,k—1—0a),
a>0,1<k<n-2.

Let us consider now the diagram v . It is easy to see that there are only two
u-admissible configurations v and v:

T={V=(n-2,n-2), 0" =(n-1-k,n-2 k) ,
2<k<n—2}.
For the first configuration the non zero vacancies numbers are:
PIN(D)=2n-22n—-4) +2n-T=1, P(2),(F = 1.
=3 =(r=2,1-3,1,5 " =(n-1—kn-2—k) ,
2<k<n-2}.

The charge C(¥) = 3. In the last case the non zero vacancies numbers are:
P(®) = PE(5) = 1, P{"(P) = 3. The charge C(7) = 5 . Consequently

n—1][n-3 2112 [n-1
(3.13) km(q)qa[ 1 H 1 ]+q5[i][1][ 3 ]

The formula (3.13) is equivalent to the expression for k,\’ #( g) from anexample 5.3 [12].
Example under consideration illustrates the following general fact.

Let ), u be partitions. We denote by Q (), ) the setofall y-admissible A-configu-
rations.

THEOREM 3.3. Let be X, = prt, (o, B) (see [12]), p, = (B7) and Q = Q(X,, u,) .
There exists a one-to-one correspondence v,, : , — §, , such that

@) PE (v, ({v)) = PP,
(ii) Clv,({¥})) = C({¥}),

forall k,m and {v} € Q, . u
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Example 8. The Clebsch-Gordan numbers.
We define the Clebsch-Gordan numbers Cﬁu by means of the formula

(3.15) S(2) = ) CLS,(2).
b

The Clebsch-Gordan number C;}y describes the multiplicity with which a given irre-
ducible representation V, ofLie algebra gé(n) appears in the tensor product V# ®V,.
It may be found by using the Littlewood-Richardson rule [ 11], or the Gelfand-Zelevinsky
rule [15], or the Kostant-Steinberg formula [24]. From Theorem 3.1 there follows a new
rule for computation of the numbers C’"}u in terms of configurations.

Let X\, u bepartitions, [()\) = r,I(p) = s. Letus consider the diagrams A = (), +

Bps-eeoy A+ fy, b1 o, .-y ty), p= (u]) and the Kostka polynomials Kpvu(D) It
is clear that

(3.16) Ky, (0 =C5, =Cp,.

Consequently, the multiplicity C¥ , is equal to the number of v-admissible (A \p)-
configurations of charge zero. A more detailed formulation of the result is given below.

THEOREM 34. The multiplicity CY, is equal to the number of arrays of integers
{B® [k > 0,n> 1} which satisfy the following conditions

@ every BF) is equal to either zero, or one.
Ake1s ifl<k<r—1,

(if) DB =0, B =

k>0 n>1 brs1—p Hr< k< T+s.
(iii) forall k£ > 1, m > 1 the following inequalities hold
1) DB - >0,

J2k
2) min(m, u,) 8, + (B - gF) > 0.

j<m

4. PROOF OF THEOREM 3.1 IN THE CASE WHEN p=0,7=0.
4.1. Rigged configurations and quantum numbers

Let X,p,u,n be partitions such that p C X, [A\| — || = || + |n],p = (m}) .
It will be convenient to change slightly the terminology introduced in Section 2.
A collection of Young diagrams {1(*} such that

@1 pPl= 37 =y —p =)

J2k+1
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is called a (M\\p, u|n)-configuration (or, in short, a configuration).
Let us define the vacancies numbers for a (\\p, ¢|n) -configuration {¢} by

PP (v) =P{P (v, pln =
4.2) =M} — Miyy + MIN(n, oy — pp )+
+Q, (WD) = 2Q(u(k)) + Qu(¥4yy),

with the initial condition »(® = 4.

A configuration {v} is called (u|n)-admissible if all the vacancies numbers
P,(,")(V, p|n) are nonnegative. Now we want to describe new combinatorial objects
which in the sequel will be called the rigged configurations.

In order to rig a configuration we fill in the first collumns of the diagrams »(* with
quantum numbers I,("’g,n >1,1<k<UN),l <a< m,(vP) using the following
rule: the extreme left boxes in the rows of length n of a diagram % are filled in from
top to bottom with a nondecreasing sequence of integers Z{%) not exceeding P{¥ (v) :
4.3) 0<I® <1 <. < T

nm, (£8)

Denote by QM (X\p, uln) the set of rigged (p|n) -admissible (\\p, 12|n)-configu-
rations. The elements of QM (X\p, |n) are called quantum arrays of type (X\p, u|n)
and are denoted by ({v},T) .

Example 4.1. Let X\, p be partitions of the number n,p = (0),n = (0). Put
T = 3 j>ke1 Aj- Assume that pj > n— X + X, Then A-configuration {v} =
{(1™),(1™),...} is p-admissible. Indeed, all vacancies numbers are nonnegative,
since PXP(v) = 0,if n> 2,PP(v) = X\, — M\, if k > 2 and by assumption
Pl( Dy = By + Xy — X, — n > 0. The configuration charge C({r}) is computed
using (3.3) where we must set ¥ = (v(F)] :

CH{vP) = C=nlp) + n(XN) — (n— A ) (n—p)) — (;’) :

The contribution of the configuration {v} to the Kostka polynomial is given by
By =Xy
qc[ : Mo [nk+>‘k_>‘lc+2]q'
™ol
Theorem 2.2 implies the following assertion.

THEOREM 4.1. The number of bitableaux with shape M\p and weight y|n is equal to
the number of type (M\p, p|n) quantum arrays:

4.4) Card |SBY (\p, uln) | = Card |QM (X\p, ulm)|. .
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4.2, Combinatorial correspondence

Following the established terminology [6], the rows of a diagram (¥ belonging to a
rigged configuration ({r},T) will be called strings of length n and type & . Thus with
each string of length n and type & a quantum number I{¥ not exceeding P{¥)(v)
is associated. A string is called special if the corresponding quantum number has the
maximal possible value, i.e. I = P{®(v) .

In this present paper we shall construct only the bijections

@.5) QMO\o, 4) = STY O\p, ).

The case of supertableaux is considered in [10].

IA. Costruction of the mapping 7*( case p = 0) . Observe that a Young diagram >
is uniquely reconstructed from a configuration {v} and a weight u . Thus we have to
construct a tableau from the set STY (), u) given arigging T of {v}. To this end,
we shall fill in the boxes of A with numbers

oo p—1,..p=1,...,1,...,1
4.6) Qo oB B o P e

By Bp1 B

where p = (pq,...,1,) .

It is sufficient to specify the following:

(i) Into which row of X\ the number p should be placed.

(ii) Which admissible rigged configuration corresponds to the new diagram N =
M{p} and tothe weight &= py,..., 4, 1,4, — 1) .

With this goal in mind, let us consider the rigging T of {v}.

Let us define the rank of a rigging.

Put {9 = 4. The rows of the diagram g will be called type O strings. We assume
that (¥ contains only one special string, which corresponds to the last row u,, of
u,p = () . We say that rank T isequal to r if = is the greatest of all numbers +/
such that for all k,0 < k < r there are special type k strings in {v} whose lengths
m, satisfy the condition m, = p, < my < ... < m, and, moreover, the diagram
™D does not contain special strings with length exceeding m_— 1.

Let QM (), p) be the set of all y-admissible rank r rigged \-configurations .
Denote by STY(™()\,u) the set of all standard tableaux with shape X and weight u
such that the number p makes its first appearence inthe (7 + 1)-th row. Clearly,

@.7) QMO w = [TQMPV O\ W, STY (3, w) = [T STY (5, ).
>0 >0

Let us define the mapping #* : QMW (), u) — STY(P(X,u) as follows. Let
({v},T) € QM (), ) . Then the number p is inscribed into the extreme right box
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of the row X ., . The diagram X is obtained from ) by removing this box. Put g =
1y« bhp_15 Hp — 1) . Let us now pass to the description of the type (X, 1) quantum
array ({D’},f) .

If r = rank T = 0 we put ({E},i) = ({v},I); in other words, if r = 0 all
quantum numbers and the configuration remain the same. Assume that » > 0 . Among
the special strings with length greater or equal to ,, of the diagram »(! find one lying
below all the others. Let A,(nll) be this string and m, its length. Assume that for some
k,1 < k < r,thespecial strings ALD,..., ALF are already constructed. Then A(F*D
is the special string lying below all the other special strings with length greater or equal
to m, in the diagram v{¥*! _ Thus we have constructed a sequence of special strings
ALY € P 1 < k < v, such that there are no special strings lying between A(P ~ and
ALD as the rows of the diagrams (¥ . Let ¥ be the Young diagram obtained from
] by deleting the extreme right box from the row ALY € ¥, 1 <k <rsif k> r
we set 78 = y(F) . We obtain a configuration {¥'} together with distinguished rows
K,ﬁ,’:ll € 7® of length m, — 1. Note that after passing from {v} to {¥'} all strings
AL with length m, = 1 disappear. The rigging T of {7} is defined as follows:
the quantum numbers Z¢¥) corresponding to all strings except K,(n’:)‘l remain the same,
ic. X = IR if (n,a)#my,m, (V)1 < k < r; the strings AP | (for
my > 1) are declared special and lie at the bottom of the block of sort & strings with
length m, — 1 (when m, = 1 such strings disappear).

PROPOSITION 4.1. The set 'I',(,';) defines a rigging of the configuration {v} .

To prove this assertion let us trace down the changes of the vacancies numbers
P{®(v) with weight v as we pass from (v,u) to (U,5). Put m,,, = m,, =

.. = 00.
Clearly, Q,(¥®) = Q,(v'¥) — 6(n—m,) forall k, where
1,z>0
@.8) 9(z)_{0’z<0
Consequently
0, if n< Mi_1,
-1. if < ’
(49) P'(.k)(;) = P,Ek)(l/) + 4 1 mk»l > n< mk

+1, if mp < n<my,,,
) if My Sn-

It remains to notice that by construction there are no special strings lying between
AP and AP e I( < P (v) for my_; < n< my. Sothe proposition 4.1 is

My
proved.
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Notice that since By <my <. < m, , if By > 1, we have
(4.10) rank (I) > rank (T).

Filling in recursively the diagram A\ with numbers from the sequence (4.6) we end
up with the A-shaped tableau with weight p . The inequality (4.10) implies that the
resultinig tableau is standard.

Thus we have defined the mapping n} and hence also 7*.

LB. Construction of the mapping «, (case p=0).

Let T € STY (), 1) . We shall construct the quantum array corresponding to the
tableau T inductively by the number of boxes in A . So let us suppose that =, is already
constructed for all tableaux with the number of boxes strictly less than |A|. Denote by
T the tableau obtained from T by deleting the extreme right box in the (r + 1)-th
row. Let X, I be its shape and weight. Denote by (7, T) the type X, [ quantum array
which corresponds to T by the induction hypothesis. We wish to construct a rigged
configuration ({r},Z) insucha way that 7*({v},I) = T . For this, let us reorder the
quantum numbers i&’g arranging them in the nonincreasing order from top to bottom
within each block of sort k strings with length n. Thus the string with the maximal
quantum number lies in the first row of such block. It is convenient to assume that
diagram 1% is formally enhanced with an extra ({(#(®)) + 1)-th row of length zero
which corresponds to a length zero special string Aé b

Construction of the configuration {v}.

If r=0,wepu ({v},I) = ({U},f) . Formula (3.5) implies that rang T = 0 .
Assume that » > 0. Consider a diagram " ¢ {¥}. Find the first from the top
special string K,(n") € 7" and let m, be its length (possibly, m, = 0 ). Assume that
for some k, 1 < k < r, we have already constructed special strings K&:’,...,K&’?
such that m, < m;,; < ... < m, . As the next string K,("’:’) let us take the first from
the top type (k — 1) special string with length not exceeding m, (possibly, m,_, =
0 ). Thus we have constructed a sequence of special strings K,(n’:) ,1 < k< r,such
that for all 1 < k < r, there are no special strings lying between KYE_’:)I and K,S,’:) )
From (3.6) it follows that m; > u, — 1. Add one box on the right end of each string
K,("t),l < k < r. We obtain a new diagram »(® with a distinguished row A,(u':),fl of
length m, + 1,1 < k < r. Theset {!¥,1 < k < r}U{Z* k > r} definesa
configuration {v}.

The rigging I of the configuration {v} is defined as follows: the quantum num-
bers corresponding to all strings except K,gl’:) remain the same, ie. I{ = ff,,'g if
(n, @) # (my, mmk(l’ﬂk))) ,1 < k < r. The strings A'¥ . are declared special. Then

my+1
such strings are placed on the top of each block of type & strings with length m, + 1.



386 AN.KIRILLOV
PROPOSITION 4.2. The set T{¥) defines a rigging of {v} . Moreover
T {v}, D) =T »
Indeed, (4.8) implies that

0, if n<m_,
@11y P(")(u) _ P(")(m N +1, ifm_, <n<my
‘ " " -1, if my <n<imyy,
0,

if Mg S n

Finally, let us observe that by construction there are no special strings lying between
AR and AP 1 < k< rie IR < PP(D) for my < n < my,;,(n,0)#
(my, mmk(’i“‘))) . Hence, the numbers I,(";) define a rigging. Furthermore, (4.11) im-
plies that the sequence of special strings A,Sn’:)n’ 1 < k < r,hasthe folowing properties:

i) my<m+1<...<m +1 andinthe diagram (™D there are no special
strings with length greater then m, . '

yand AP 1 <k<r.

(ii) there are no special strings lying between Af(n’:: my+ 17

+

Hence, rang T = . By the induction hypothesis we may assume that 7*( {U},f) =
T. Taking into account the properties (i), (ii) and the definition of ©n* (see IA), we
conclude that #*({v},I) = T . Assertion 4.2 is proved.

Thus, a bijection QM (A, ) = STY (), p) is constructed.

By examining the correspondence (4.5) (for p = 0 ) one can show that it has the
following properties which we describe in a series of lemmas.

LEMMA4.1. Let p= (m'), (1,T) beatype (M\p, 1) quantum array. Then

7T ({v},I) € STY(M\p,p). .

LEMMA 4.2. Let p be a partition, () = p,t € STY (M, p) , let w(T) be the word
correspondingto T' and w,,w,, ... be the standard subwords extracted from w(T) by
means of the Lascoux-Schiitzenberger algorithm for the calculation of the charge (sce
(1.3), Section 1). Let {v} be the configuration which corresponds to T' under mapping

.
Then, if k < p,, , we have (M) = d(w,) . .

The definition a(w) is given in (1.4), Section 1.
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LEMMAA4.3. Let T € STY (), ) , let T be the tableau obtained from T by deleting
the extreme left box in the (r + 1) -th row (see the definition of =, ). Let ({T/'},f) be
the quantum array which corresponds to T' . Then

1 CHrh + Y IW —C{mp - Y TR =), - /D), -1,
k,no kno
2 C(T) —O(T) = (), —d(w —pp) — 1. .

COROLLARY 4.1. The charges of T and {v} and the set of quantum numbers ¥
associated with the tableau T are related by the formula

@.12) C(T) =C({rh + > IH. ]

kna

Note that (4.12) along with (1.14) imply Theorem 3.1 (forthe case p=0,7=0).

Remark 4.1. Let yu = (uy,...,4,) be apartition, let ¢ € S, be a permutation and
u = (#rl(l);- . -,ﬂa—l(k)) .

It is clear that QM (X, u%) = QM (X, ) . Hence, one can define the mappings ¢,
and ¢, such that the following diagram is commutative

QM%) = QMO\,w

1 1

STY(M\u%) 2 STY(O,w

(4

It seems plausible that the map ¢ concides with the Knuth transformation [22].

4.3. Involutions on the set of standard tableaux {10].

On the set QM (X\p, u|n) we define the involution 6, which corresponds to «in-
version of the quantum numbers»:

4.14) 0({r},T) = ({v},I),

where f,(,'fﬁ = PR () — I;’:,)‘u(y(k,)_ml , 1 <a<m (). Consequently, by virtue

of (4.5) there exists an involution @ on the set STY (A, u) . On the other hand, we
defined in (1.6), Section 1, the Schiitzenberger involution

S:STY () pu) — STY (X, ‘F),

where T = (uy, pg_y,---#q) for = (uy,...u,) . Letus denote by ¢ the transfor-
mation STY (), T — STY (), p) defined by diagram (4.13) with u° = .
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THEOREM 4.2. The following assertions hold
L Ifu=(m),then S=6.
2. The diagram below is commutative

STY(M\u) > STY(M D)
4.15) N0 Ve -
STY (X, )

COROLLARY 4.2. The Schiitzenberger involution S : STY ()\,(m')) transforms the
charge functional info the index:

(4.16) C(S(T)) = Ind(T). [

The definition of the index for a tableaux with repetitions may be found in [10].
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